MATH4060 Tutorial 1

19 January 2023

Problem 1. Show that

- (i) $f(z) = e^{-\pi z^2}$ belongs to \mathfrak{F}_a for all a > 0.
- (ii) $f(z) = \frac{c}{c^2 + z^2}$ belongs to \mathfrak{F}_a for all 0 < a < c.

For (i), f is holomorphic on $S_a = \{ |\operatorname{Im}(z)| < a \}$ because it is entire. If $z = x + iy \in S_a$,

$$|e^{-\pi z^2}| = e^{\operatorname{Re}(-\pi z^2)} = e^{-\pi (x^2 - y^2)} \le C e^{-\pi x^2}$$

for some constant C > 0 independent of |y| < a (e.g. take $C = e^{\pi a^2}$). So it suffices to show that there exists A > 0 such that $e^{-\pi x^2} \leq A/(1+x^2)$ for all $x \in \mathbb{R}$, i.e. that $(1+x^2)e^{-\pi x^2}$ is bounded. Note that a continuous function g(x) on \mathbb{R} is bounded if $\lim_{x\to\pm\infty} g(x)$ exist. And indeed, by applying L'hopital's rule twice, we have

$$\lim_{x \to \infty} \frac{1 + x^2}{e^{\pi x^2}} = 0.$$

For (ii), since 0 < a < c, the function $f(z) = c/(c^2 + a^2)$ is holomorphic on S_a (as it does not contain the poles $\pm ci$). If z = x + iy,

$$|c^{2} + z^{2}| = |(c^{2} + x^{2} - y^{2}) + 2xyi| \ge |c^{2} + x^{2} - y^{2}| > (c^{2} - a^{2}) + x^{2}.$$

 So

$$|f(z)| \le \frac{c}{(c^2 - a^2) + x^2}.$$

As above, this is bounded by some $A/(1+x^2)$ because the RHS is a continuous function in x and

$$\lim_{x \to \pm \infty} \frac{c(1+x^2)}{(c^2 - a^2) + x^2} = c < \infty.$$

Problem 2. Let f be non-constant and holomorphic in an open set containing the closed unit disc. Show that if |f(z)| = 1 whenever |z| = 1, then the image of f contains the unit disc.

We first show that f has a zero in \mathbb{D} . Suppose for a contradiction, f is nowhere vanishing on \mathbb{D} . Applying the maximum-modulus theorem to f and 1/f (both holomorphic in \mathbb{D}), shows that $|f(z)| \leq 1$ and $1/|f(z)| \leq 1$ on \mathbb{D} , so |f(z)| = 1 and f must be constant, a contradiction. Next, we show that f(z) - w = 0 also has a solution for any $w \in \mathbb{D}$. We can use Rouche's theorem on the unit circle (with w considered as a constant function) because |f(z)| = 1 on |z| = 1 and |w| < 1. This shows that f(z) and f(z) - w have the same number of zeros in \mathbb{D} . Thus the image of f contains any such w.

Problem 3. Find the relation between two entire functions f(z) and g(z) satisfying $|f(z)| \leq C(1+|z|^k)|g(z)|$ for some constant C > 0 and non-negative integer k.

Assume $g \neq 0$. We want to show that f is a polynomial multiple of g. First define h(z) = f(z)/g(z), which is holomorphic on $\mathbb{C} \setminus \{\text{zeros of } g\}$ and satisfies $|h(z)| \leq C(1+|z|^k)$.

Observe that h(z) extends to an entire function on \mathbb{C} . Indeed, if g is a non-zero constant function, then h is trivially entire; otherwise, g has a discrete zero set S, forming the (isolated) singularities of h. For each $z_0 \in S$, h(z) is holomorphic and bounded on $0 < |z - z_0| \le r$ for some small r > 0. By Riemann theorem, each z_0 is a removable singularity. Hence h(z) is entire. Next we claim that any entire function satisfying $|h(z)| \le C(1+|z|^k)$ on \mathbb{C} is a polynomial. Write $h(z) = \sum_{n=0}^{\infty} a_n z^n$ as a power series, where $a_n = h^{(n)}(0)/n!$. As a corollary of Cauchy's integral formula, for any R > 0, $|a_n| \le \sup_{|z|=R} h(z)/R^n \le C(1+R^k)/R^n$. If n > k, the RHS converges to zero as $R \to \infty$, and so $a_n = 0$ for n > k. In other words, h is a polynomial of degree $\le k$, and f is a polynomial multiple of g. Note that, in particular, by taking k = 0, this shows that an entire function cannot be dominated by another unless they are constant multiples of each other.

Problem 4. Prove that any injective entire function f is linear, i.e. f(z) = az + b for $a \neq 0$.

We study the type of singularity f can have at infinity. Consider g(z) = f(1/z) on $\mathbb{C} \setminus \{0\}$. First, we rule out z = 0 as a removable singularity of g: otherwise, g(z) is bounded near z = 0, f(z) is bounded near infinity, and Liouville's theorem implies that f is constant, a contradiction to its injectivity. Next we rule out essential singularity as a possibility: otherwise take r > 0, then Casorati-Weierstrass theorem states that the image $g(D_r(0) \setminus \{0\})$ is dense in \mathbb{C} . For any open subset U of $\mathbb{C} \setminus \overline{D}_r(0), g(U)$ is open by the open mapping theorem, so must contain some element of $g(D_r(0) \setminus \{0\})$. This contradicts injectivity because the two subsets of the domain are disjoint.

So z = 0 must be a pole. The power series expansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$ gives the Laurent expansion $g(z) = \sum_{n=0}^{\infty} a_n z^{-n}$. Because z = 0 is a pole, $a_n = 0$ for all large n, and so f is a polynomial. As it is injective, f cannot have more than one zero, so $f(z) = a(z-z_0)^m$. We want to show that m = 1. Certainly, $m \neq 0$. And if $m \geq 2$, taking $z_1 = z_0 + 1$ and $z_2 = z_0 + e^{2\pi i/m}$ gives $f(z_1) = a = f(z_2)$, so f is not injective. Therefore m = 1 and $a \neq 0$.