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Problem 1. Show that

(i) f(z) = e−πz
2

belongs to Fa for all a > 0.

(ii) f(z) = c
c2+z2 belongs to Fa for all 0 < a < c.

For (i), f is holomorphic on Sa = {| Im(z)| < a} because it is entire. If z = x+ iy ∈ Sa,

|e−πz
2

| = eRe(−πz2) = e−π(x
2−y2) ≤ Ce−πx

2

for some constant C > 0 independent of |y| < a (e.g. take C = eπa
2

). So it suffices

to show that there exists A > 0 such that e−πx
2 ≤ A/(1 + x2) for all x ∈ R, i.e. that

(1 + x2)e−πx
2

is bounded. Note that a continuous function g(x) on R is bounded if
limx→±∞ g(x) exist. And indeed, by applying L’hopital’s rule twice, we have

lim
x→∞

1 + x2

eπx2 = 0.

For (ii), since 0 < a < c, the function f(z) = c/(c2 + a2) is holomorphic on Sa (as it
does not contain the poles ±ci). If z = x + iy,

|c2 + z2| = |(c2 + x2 − y2) + 2xyi| ≥ |c2 + x2 − y2| > (c2 − a2) + x2.

So
|f(z)| ≤ c

(c2 − a2) + x2
.

As above, this is bounded by some A/(1+x2) because the RHS is a continuous function
in x and

lim
x→±∞

c(1 + x2)

(c2 − a2) + x2
= c <∞.

Problem 2. Let f be non-constant and holomorphic in an open set containing the closed
unit disc. Show that if

∣∣f(z)
∣∣ = 1 whenever |z| = 1, then the image of f contains the

unit disc.

We first show that f has a zero in D. Suppose for a contradiction, f is nowhere vanishing
on D. Applying the maximum-modulus theorem to f and 1/f (both holomorphic in D),
shows that |f(z)| ≤ 1 and 1/|f(z)| ≤ 1 on D, so |f(z)| = 1 and f must be constant, a
contradiction. Next, we show that f(z)− w = 0 also has a solution for any w ∈ D. We
can use Rouche’s theorem on the unit circle (with w considered as a constant function)
because

∣∣f(z)
∣∣ = 1 on |z| = 1 and |w| < 1. This shows that f(z) and f(z)− w have the

same number of zeros in D. Thus the image of f contains any such w.

Problem 3. Find the relation between two entire functions f(z) and g(z) satisfying∣∣f(z)
∣∣ ≤ C(1 +|z|k)

∣∣g(z)
∣∣ for some constant C > 0 and non-negative integer k.

Assume g 6≡ 0. We want to show that f is a polynomial multiple of g. First define h(z) =

f(z)/g(z), which is holomorphic on C \ {zeros of g} and satisfies
∣∣h(z)

∣∣ ≤ C(1 + |z|k).
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Observe that h(z) extends to an entire function on C. Indeed, if g is a non-zero constant
function, then h is trivially entire; otherwise, g has a discrete zero set S, forming the
(isolated) singularities of h. For each z0 ∈ S, h(z) is holomorphic and bounded on
0 < |z − z0| ≤ r for some small r > 0. By Riemann theorem, each z0 is a removable
singularity. Hence h(z) is entire. Next we claim that any entire function satisfying∣∣h(z)

∣∣ ≤ C(1 +|z|k) on C is a polynomial. Write h(z) =
∑∞
n=0 anz

n as a power series,

where an = h(n)(0)/n!. As a corollary of Cauchy’s integral formula, for any R > 0,
|an| ≤ sup|z|=R h(z)/Rn ≤ C(1 + Rk)/Rn. If n > k, the RHS converges to zero as
R → ∞, and so an = 0 for n > k. In other words, h is a polynomial of degree ≤ k,
and f is a polynomial multiple of g. Note that, in particular, by taking k = 0, this
shows that an entire function cannot be dominated by another unless they are constant
multiples of each other.

Problem 4. Prove that any injective entire function f is linear, i.e. f(z) = az + b for
a 6= 0.

We study the type of singularity f can have at infinity. Consider g(z) = f(1/z) on
C \ {0}. First, we rule out z = 0 as a removable singularity of g: otherwise, g(z) is
bounded near z = 0, f(z) is bounded near infinity, and Liouville’s theorem implies that
f is constant, a contradiction to its injectivity. Next we rule out essential singularity as
a possibility: otherwise take r > 0, then Casorati-Weierstrass theorem states that the
image g(Dr(0) \ {0}) is dense in C. For any open subset U of C \Dr(0), g(U) is open
by the open mapping theorem, so must contain some element of g(Dr(0) \ {0}). This
contradicts injectivity because the two subsets of the domain are disjoint.

So z = 0 must be a pole. The power series expansion f(z) =
∑∞
n=0 anz

n gives the
Laurent expansion g(z) =

∑∞
n=0 anz

−n. Because z = 0 is a pole, an = 0 for all large
n, and so f is a polynomial. As it is injective, f cannot have more than one zero, so
f(z) = a(z − z0)m. We want to show that m = 1. Certainly, m 6= 0. And if m ≥ 2,
taking z1 = z0 + 1 and z2 = z0 + e2πi/m gives f(z1) = a = f(z2), so f is not injective.
Therefore m = 1 and a 6= 0.
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